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Thermal walls in computer simulations
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The physical effects associated with the implementation of two different types of thé@msiochastit
walls that could be used in computer simulations are considered. The effects of these boundary conditions are
first demonstrated using the ideal-gas model and then their influence on interacting péwitties example
of hard spheresis discussed.S1063-651X98)50501-§

PACS numbdss): 47.11+j, 83.20.Lr, 51.10+y

Idealized molecular models of statistical mechanics—theemerges from the wall with the parallel components of its
ideal gas and the hard sphere systems—are valuable as tielocity chosen randomly from a Gaussian distribution at a
basis for any more complex and realistic description of exwall temperaturdl,, [Eq. (2), ie{y,z}] and the magnitude of
isting systems and often as the very foundation upon whicfihe normal component of the velocity, , sampled from the
other theories are erected. There are strong reasons for fifggobability density:
studying the simplest system exhibiting a property of
interest—frequently the very essence of a property best re- __m _
veals itself in the simplest of cases where it occurs, unob- P =17 |vX|eXF{
scured by the complexities arising in more sophisticated situ-
ations. One of the problems pertaining to molecular systemg is the mass of a moleculég is the Boltzmann constant,
is the effect of(solid) boundaries on a finite size system andand the sign of, must be chosen appropriately according to
microscopic modeling of the boundary conditions. In a clasthe wall location[6-9,2.
sic study[1], Maxwell made the first attempt at expressing Some authorf10—-12, though, have stated in their papers
“the conditions which must be satisfied by a gas in contacthat the boundary conditions are ones in which the parallel
with a solid wall.” He considered two types of surfaces for componentsand and the normal component of the velocity
walls: a perfectly smooth surface and a highly uneven, lowof a particle hitting a wall are all sampled from a Gaussian
density granular surface. Each molecule that strikes the pegistribution:
fectly smooth surface is specularly reflected. Each molecule )
that strikes the granular surface undergoes a series of colli- _/ m mu;
sions within the surface with different surface molecules, and b2(vi)= 27k Ty ex;{ B 2kgT,,
as a result, its “escape” velocity becomes randomized and
uncorrelated with its initial velocity. The distribution of ve- wherei e {x,y,z}. It is likely that this choice has its origin in
locities of the molecules leaving this surface will be deter-the false expectation that a wall at a particular temperature
mined by the temperature of the wall. We shall call walls ofmust emit particles with a Gaussian distribution correspond-
this type thermal walls. Maxwell performed his own calcu-ing to that temperature. The correct boundary conditions
lations under the assumption that a fractfonf a surface is must also take into account the velocity-dependent probabil-
thermalizing and a fraction4f is reflecting. ity with which particles from the system collide with the

With advances in molecular simulations and interest inwall. In other words, one should sample the flux of the par-
confined geometrie2—4], the problem of modeling bound- ticles leaving the wall rather than the density of those in the
aries microscopically is again of central interest. For simulawall.
tions where the precise microscopic structure of the walls is In this note we highlight the physical differences between
unimportant, the simplest choices for models for walls arethe ¢; and ¢, boundary conditions. Spurious physical ef-
those introduced by Maxwell; the reflective and the thermafects arise with¢, and lead to incorrect results in the simu-
walls. The implementation of reflective boundaries islations. Specifically, the case @f, results in(1) an internal
straightforward(the normal component of a molecule im- temperaturg¢13] that is different from the expected valu@)
pinging on the wall is reversed, the tangential componenpossible deviations from the Maxwellian velocity distribu-
remains unaltered The implementation of thermal walls, on tion, and(3) inhomogeneities in density and temperature pro-
the other hand, seems to have been carried out in two diffeffiles.
ent ways in the literature. In order to model a system of To demonstrate the effects of these boundary conditions
particles in thermal contact with a thermal reservoir, oneon molecular systems, let us first consider their influence on
must properly take into account the velocity distribution of an ideal gas. We choose this system for the very reasons
particles entering and exiting such a resenj&@}. A mol-  described above: the effects of walls are distinct and uncon-
ecule colliding with a thermal wallparallel to they-z plane  cealed by any other influencés.g., particle-particle interac-

mo?2
2kg Ty,
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FIG. 1. A plot of the elliptic integral in Eq(5) as a function of
r/R. The integral is proportional to the local density of ideal-gas  FIG. 2. The number density distribution comparison in the hard-
particles bounded by a “thermal” ring of radius. sphere system for the two different thermal walls described in the

text. Note the increase in the density at the wallls §ar Np is
tion and external fields We will further demonstrate that Proportional to number densit measures the location from the
even when the particles are allowed to interact among themeft wall measured in units of the distance between the walls.
selves, the qualitative effects remain.

We begin with the most trivial case: a One-dimensiona'CO”eCt uniform density distribution inside the I‘ing, whereas
ideal gas confined between two thermal walls. The probabil(b) for ¢, the density distribution can be expressed as an
ity density of finding a particle at a locationfrom the left ~ elliptic integral(see Fig. 1
wall andx—L from the right wall (O0<x=L) depends on the

velocity distribution functiong as dN(r):P_’ [ m fh de
2mrdr - 2 V27kgTJo 1+ (r/R)2—2(r/R)co®’

dN
d(xx)zf pdtf v, b(,) S(X—v,1)

®)

wherer is the radial distance from the center of the circle:
O<r=<R andP’ is the wall emission per unit time per unit
+J PdtJ doxd(vy) S(x—L—vyl),  (3) length of the wall. Also, the internal temperature with
type boundaries is equal I,/2. One can study other geom-
etries but inhomogeneities persist.
As a final example of the ideal-gas system, let us consider
a system that is infinite in two directions and bounded by two
thermal walls in the third(In computer simulations, this
would correspond to having periodic boundary conditions in
two directions and walls in the thindThis situation clearly
bears a strong resemblance to the one-dimensional case dis-
_ _ cussed above. Again, if the component of the velocity of the
g(vx,x)—f Pdté(v,)5(x—v,t) emerging particle perpendicular to the wall is chosen from
¢4, the density between the two walls is uniform.¢% is
+f Pdtp(vy) S(X—L—0,t). (4) chosen for the wall distribution, particles increasingly tend to
have their perpendicular velocity component approach a van-
ishingly small value and they eventually remain localized in
Choosing¢, for the “wall distribution,” Egs. (4) and (3)  the vicinity of the walls. The internal temperature is reduced
reduce to a Maxwellian velocity distribution and a uniform to 5T,,.
density distribution inside the “box.” Selecting the other  Considering more complicated systems and allowing par-
distribution, ¢,, the probability density becomes non- ticles to interact with each other can somewhat obscure these
normalizable, corresponding to evolution towards a configueffects. Let us illustrate this by comparing the ideal gas to
ration where particles have vanishingly small velocities andhe simplest interacting system—one made up of hard
remain localized at the walls. The mean kinetic energy of thespheres. This system is of particular importance in statistical
molecules of the system decreases with time. physics as the simplest system exhibiting both solid and fluid
Because the one-dimensional case is singular, we nowhases and an order-disorder transition between them.
consider a two-dimensional ideal gas bounded by a ring of In Fig. 2 below, we compare the humber density profiles
radiusR. The distributions that result upon letting the gasthat result using the two boundary conditions with and
equilibrate with the walls aréa) for ¢,, the expected and ¢,. The profiles were obtained with hard-sphere molecular-

wheret denotes timeN the number of particles? a nor-
malization coefficient related to the wall collision probabil-
ity, and 8(x’) is the Dirac delta function, imposing a con-
straint relating the time, velocity, and location of interest.
The velocity distributiong at a locationx becomes
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FIG. 3. Profiles of the different contributions to the average kinetic energy per particle in the hard-sphere system for the two different

thermal walls described in the texg) shows the contribution to the energy from the normal to the Walldlrection@mvi), (b) is the
energy contribution from one of the directions parallel to the wall.causes inhomogeneities in the average kinetic energy as well as a
reduction in its value in the interior of the systexnmeasures the location from the left wall measured in units of the distance between the
walls.

dynamics simulationgl4] where Newton’s equations of mo- In Fig. 3, we show the average kinetic energgmpera-
tion are integrated for a system of particles interacting withture) profiles obtained from the previously described
each other through a hard sphere potential. Hence, all pamolecular-dynamics simulations witth; and ¢, boundary
ticles move with constant velocities between collisions andconditions. For both distribution&gT,,= 1. Note the inho-
their velocities change abruptly during collisions only. Themogeneities in the temperature fgy as well as the reduc-
change in velocity in a collision between two particles istion of the interior temperature.

determined by momentum and energy conservation. To ob- Thermal walls have been extensively employed in com-
tain the number density profiles of Fig. 2, we simulated 108°uter simulations for a variety of studies ranging from the
hard spheres in a three-dimensional box of Sizemode_lmg of nonequilibrium ﬂqw$2], the .measurement of
7.10X 6.15 % 6.10r, whereo is the hard-sphere diameter. Pe- VeloCity and temperature profilg3], specific heat and the
riodic boundary conditions were used in teand z direc- qonc_iuctlwty[ll] of ﬂwds_ in conflne_d geometries, the inves-
tions while in thex direction studies were carried out with igation of non-Newtonian behavidrll], and fluctuations
both ¢, and ¢, type walls. Starting from an initially uniform nd the onset of convectigd2] in fluids, to the breakdown
distribution of particles, the system was allowed to equili-°f hydrodynamic$10]. Clearly, a correct realization of ther-
brate for approximately 25@0and after the equilibration pe- mal walls is necessary to obtain va_I|d results—mpere_stmg
riod, data were collected and averaged over 2500he phenomena co.u.Id be clouded by an improper application of
reduced timer is defined via the molecular mass, the boundary condition§l5]. In general, the influence of a wall

particle’s thermal energsT, and the hard-sphere diameter is significant within one mean free path of molecules. Hence

o as 7= om/(ksT). Contrasting with the ideal gas, hard employing the correct boundary conditions becomes more

spheres can collide with each other, and subsequently th%ruual for systems whose characteristic size is small com-

statev,=0 does not have an infinite lifetime and a hard pared to the mean free paftne Knudsen numbefn=1).
sphergas opposed to an ideal-gas partictan escape a wall This work was supported by the NSF GRT program, and
if another sphere collides with it. Nevertheless, the increasey funds from NASA, the Center for Academic Computing

in density near the wallé&superimposed on the layerihg]) at Penn State, and the Petroleum Research Fund adminis-
is strikingly apparent. tered by the American Chemical Society.
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The internal temperature is defined via the average kinetic

Mareschal that the correct boundary conditias described in
Ref.[9]) was used in all simulations. The phenomenon studied
by Duet al. (Ref.[10]) involving the loss of energy of some of
the particles is not driven by the boundary conditions at the
walls but rather by the inelasticity of the collisions between the
particles. Thus their principal results ought to be substantially
independent of the choice of boundary conditions. We also
learned from Patricio Cordero that even though the velocity
distribution on page 490 in the first paper cited in Réfl] is

the incorrect one, the correct velocity distribution was actually
used in the simulations.



