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Thermal walls in computer simulations
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The physical effects associated with the implementation of two different types of thermal~or stochastic!
walls that could be used in computer simulations are considered. The effects of these boundary conditions are
first demonstrated using the ideal-gas model and then their influence on interacting particles~with an example
of hard spheres! is discussed.@S1063-651X~98!50501-6#

PACS number~s!: 47.11.1j, 83.20.Lr, 51.10.1y
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Idealized molecular models of statistical mechanics—
ideal gas and the hard sphere systems—are valuable a
basis for any more complex and realistic description of
isting systems and often as the very foundation upon wh
other theories are erected. There are strong reasons for
studying the simplest system exhibiting a property
interest—frequently the very essence of a property best
veals itself in the simplest of cases where it occurs, un
scured by the complexities arising in more sophisticated s
ations. One of the problems pertaining to molecular syste
is the effect of~solid! boundaries on a finite size system a
microscopic modeling of the boundary conditions. In a cl
sic study@1#, Maxwell made the first attempt at expressi
‘‘the conditions which must be satisfied by a gas in cont
with a solid wall.’’ He considered two types of surfaces f
walls: a perfectly smooth surface and a highly uneven, lo
density granular surface. Each molecule that strikes the
fectly smooth surface is specularly reflected. Each molec
that strikes the granular surface undergoes a series of c
sions within the surface with different surface molecules, a
as a result, its ‘‘escape’’ velocity becomes randomized a
uncorrelated with its initial velocity. The distribution of ve
locities of the molecules leaving this surface will be det
mined by the temperature of the wall. We shall call walls
this type thermal walls. Maxwell performed his own calc
lations under the assumption that a fractionf of a surface is
thermalizing and a fraction 12 f is reflecting.

With advances in molecular simulations and interest
confined geometries@2–4#, the problem of modeling bound
aries microscopically is again of central interest. For simu
tions where the precise microscopic structure of the wall
unimportant, the simplest choices for models for walls
those introduced by Maxwell: the reflective and the therm
walls. The implementation of reflective boundaries
straightforward~the normal component of a molecule im
pinging on the wall is reversed, the tangential compon
remains unaltered!. The implementation of thermal walls, o
the other hand, seems to have been carried out in two di
ent ways in the literature. In order to model a system
particles in thermal contact with a thermal reservoir, o
must properly take into account the velocity distribution
particles entering and exiting such a reservoir@5#. A mol-
ecule colliding with a thermal wall~parallel to they-z plane!
571063-651X/98/57~1!/17~4!/$15.00
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emerges from the wall with the parallel components of
velocity chosen randomly from a Gaussian distribution a
wall temperatureTw @Eq. ~2!, iP$y,z%# and the magnitude o
the normal component of the velocity,vx , sampled from the
probability density:

f1~vx!5
m

kBTw
uvxuexpF2

mvx
2

2kBTw
G . ~1!

m is the mass of a molecule,kB is the Boltzmann constant
and the sign ofvx must be chosen appropriately according
the wall location@6–9,2#.

Some authors@10–12#, though, have stated in their pape
that the boundary conditions are ones in which the para
componentsand and the normal component of the veloci
of a particle hitting a wall are all sampled from a Gauss
distribution:

f2~v i !5A m

2pkBTw
expF2

mv i
2

2kBTw
G , ~2!

wherei P$x,y,z%. It is likely that this choice has its origin in
the false expectation that a wall at a particular tempera
must emit particles with a Gaussian distribution correspo
ing to that temperature. The correct boundary conditio
must also take into account the velocity-dependent proba
ity with which particles from the system collide with th
wall. In other words, one should sample the flux of the p
ticles leaving the wall rather than the density of those in
wall.

In this note we highlight the physical differences betwe
the f1 and f2 boundary conditions. Spurious physical e
fects arise withf2 and lead to incorrect results in the sim
lations. Specifically, the case off2 results in~1! an internal
temperature@13# that is different from the expected value,~2!
possible deviations from the Maxwellian velocity distrib
tion, and~3! inhomogeneities in density and temperature p
files.

To demonstrate the effects of these boundary conditi
on molecular systems, let us first consider their influence
an ideal gas. We choose this system for the very reas
described above: the effects of walls are distinct and unc
cealed by any other influences~e.g., particle-particle interac
R17 © 1998 The American Physical Society
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tion and external fields!. We will further demonstrate tha
even when the particles are allowed to interact among th
selves, the qualitative effects remain.

We begin with the most trivial case: a one-dimensio
ideal gas confined between two thermal walls. The proba
ity density of finding a particle at a locationx from the left
wall andx2L from the right wall (0<x<L) depends on the
velocity distribution functionf as

dN~x!

dx
5E PdtE dvxf~vx!d~x2vxt !

1E PdtE dvxf~vx!d~x2L2vxt !, ~3!

where t denotes time,N the number of particles,P a nor-
malization coefficient related to the wall collision probab
ity, and d(x8) is the Dirac delta function, imposing a con
straint relating the time, velocity, and location of intere
The velocity distributiong at a locationx becomes

g~vx ,x!5E Pdtf~vx!d~x2vxt !

1E Pdtf~vx!d~x2L2vxt !. ~4!

Choosingf1 for the ‘‘wall distribution,’’ Eqs. ~4! and ~3!
reduce to a Maxwellian velocity distribution and a unifor
density distribution inside the ‘‘box.’’ Selecting the othe
distribution, f2, the probability density becomes non
normalizable, corresponding to evolution towards a confi
ration where particles have vanishingly small velocities a
remain localized at the walls. The mean kinetic energy of
molecules of the system decreases with time.

Because the one-dimensional case is singular, we
consider a two-dimensional ideal gas bounded by a ring
radius R. The distributions that result upon letting the g
equilibrate with the walls are~a! for f1, the expected and

FIG. 1. A plot of the elliptic integral in Eq.~5! as a function of
r /R. The integral is proportional to the local density of ideal-g
particles bounded by a ‘‘thermal’’ ring of radiusR.
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correct uniform density distribution inside the ring, where
~b! for f2, the density distribution can be expressed as
elliptic integral ~see Fig. 1!:

dN~r !

2prdr
5

P8

2
A m

2pkBTE0

2p du

A11~r /R!222~r /R!cosu
,

~5!

wherer is the radial distance from the center of the circ
0<r<R and P8 is the wall emission per unit time per un
length of the wall. Also, the internal temperature withf2
type boundaries is equal toTw/2. One can study other geom
etries but inhomogeneities persist.

As a final example of the ideal-gas system, let us cons
a system that is infinite in two directions and bounded by t
thermal walls in the third.~In computer simulations, this
would correspond to having periodic boundary conditions
two directions and walls in the third.! This situation clearly
bears a strong resemblance to the one-dimensional case
cussed above. Again, if the component of the velocity of
emerging particle perpendicular to the wall is chosen fr
f1, the density between the two walls is uniform. Iff2 is
chosen for the wall distribution, particles increasingly tend
have their perpendicular velocity component approach a v
ishingly small value and they eventually remain localized
the vicinity of the walls. The internal temperature is reduc
to 2

3 Tw .
Considering more complicated systems and allowing p

ticles to interact with each other can somewhat obscure th
effects. Let us illustrate this by comparing the ideal gas
the simplest interacting system—one made up of h
spheres. This system is of particular importance in statist
physics as the simplest system exhibiting both solid and fl
phases and an order-disorder transition between them.

In Fig. 2 below, we compare the number density profi
that result using the two boundary conditions withf1 and
f2. The profiles were obtained with hard-sphere molecu

FIG. 2. The number density distribution comparison in the ha
sphere system for the two different thermal walls described in
text. Note the increase in the density at the wallls forf2. Np is
proportional to number density;x measures the location from th
left wall measured in units of the distance between the walls.
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FIG. 3. Profiles of the different contributions to the average kinetic energy per particle in the hard-sphere system for the two

thermal walls described in the text.~a! shows the contribution to the energy from the normal to the wall (x) direction ^ 1
2 mvx

2&, ~b! is the
energy contribution from one of the directions parallel to the wall.f2 causes inhomogeneities in the average kinetic energy as well
reduction in its value in the interior of the system.x measures the location from the left wall measured in units of the distance betwee
walls.
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dynamics simulations@14# where Newton’s equations of mo
tion are integrated for a system of particles interacting w
each other through a hard sphere potential. Hence, all
ticles move with constant velocities between collisions a
their velocities change abruptly during collisions only. T
change in velocity in a collision between two particles
determined by momentum and energy conservation. To
tain the number density profiles of Fig. 2, we simulated 1
hard spheres in a three-dimensional box of s
7.1s36.1s36.1s, wheres is the hard-sphere diameter. P
riodic boundary conditions were used in they and z direc-
tions while in thex direction studies were carried out wit
bothf1 andf2 type walls. Starting from an initially uniform
distribution of particles, the system was allowed to equ
brate for approximately 2500t and after the equilibration pe
riod, data were collected and averaged over 25000t. The
reduced timet is defined via the molecular massm, the
particle’s thermal energykBT, and the hard-sphere diamet
s as t5sAm/(kBT). Contrasting with the ideal gas, har
spheres can collide with each other, and subsequently
state vx50 does not have an infinite lifetime and a ha
sphere~as opposed to an ideal-gas particle! can escape a wal
if another sphere collides with it. Nevertheless, the incre
in density near the walls~superimposed on the layering@4#!
is strikingly apparent.
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In Fig. 3, we show the average kinetic energy~tempera-
ture! profiles obtained from the previously describe
molecular-dynamics simulations withf1 and f2 boundary
conditions. For both distributions,kBTw51. Note the inho-
mogeneities in the temperature forf2 as well as the reduc
tion of the interior temperature.

Thermal walls have been extensively employed in co
puter simulations for a variety of studies ranging from t
modeling of nonequilibrium flows@2#, the measurement o
velocity and temperature profiles@7#, specific heat and the
conductivity@11# of fluids in confined geometries, the inve
tigation of non-Newtonian behavior@11#, and fluctuations
and the onset of convection@12# in fluids, to the breakdown
of hydrodynamics@10#. Clearly, a correct realization of ther
mal walls is necessary to obtain valid results—interest
phenomena could be clouded by an improper application
boundary conditions@15#. In general, the influence of a wa
is significant within one mean free path of molecules. Hen
employing the correct boundary conditions becomes m
crucial for systems whose characteristic size is small co
pared to the mean free path~the Knudsen numberKn*1).

This work was supported by the NSF GRT program, a
by funds from NASA, the Center for Academic Computin
at Penn State, and the Petroleum Research Fund adm
tered by the American Chemical Society.
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